Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6619): 557-560, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378964

RESUMO

Long-distance quantum communication and networking require quantum memory nodes with efficient optical interfaces and long memory times. We report the realization of an integrated two-qubit network node based on silicon-vacancy centers (SiVs) in diamond nanophotonic cavities. Our qubit register consists of the SiV electron spin acting as a communication qubit and the strongly coupled silicon-29 nuclear spin acting as a memory qubit with a quantum memory time exceeding 2 seconds. By using a highly strained SiV, we realize electron-photon entangling gates at temperatures up to 1.5 kelvin and nucleus-photon entangling gates up to 4.3 kelvin. We also demonstrate efficient error detection in nuclear spin-photon gates by using the electron spin as a flag qubit, making this platform a promising candidate for scalable quantum repeaters.

2.
Phys Rev Lett ; 129(5): 053603, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960557

RESUMO

An efficient, scalable source of shaped single photons that can be directly integrated with optical fiber networks and quantum memories is at the heart of many protocols in quantum information science. We demonstrate a deterministic source of arbitrarily temporally shaped single-photon pulses with high efficiency [detection efficiency=14.9%] and purity [g^{(2)}(0)=0.0168] and streams of up to 11 consecutively detected single photons using a silicon-vacancy center in a highly directional fiber-integrated diamond nanophotonic cavity. Combined with previously demonstrated spin-photon entangling gates, this system enables on-demand generation of streams of correlated photons such as cluster states and could be used as a resource for robust transmission and processing of quantum information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...